3.1.69 \(\int \frac {1}{x^2 \sqrt {a+c x^2} (d+e x+f x^2)} \, dx\) [69]

Optimal. Leaf size=367 \[ -\frac {\sqrt {a+c x^2}}{a d x}-\frac {f \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}+\frac {e \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d^2} \]

[Out]

e*arctanh((c*x^2+a)^(1/2)/a^(1/2))/d^2/a^(1/2)-(c*x^2+a)^(1/2)/a/d/x-1/2*f*arctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e
^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2))*(e^2-2*d*f+e*(-4*d*f+e
^2)^(1/2))/d^2*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)+1/2*f*arctanh(1/2
*(2*a*f-c*x*(e+(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)
)*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2))/d^2*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))
^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.78, antiderivative size = 367, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {6860, 270, 272, 65, 214, 1048, 739, 212} \begin {gather*} -\frac {f \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {f \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {e \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d^2}-\frac {\sqrt {a+c x^2}}{a d x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^2*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-(Sqrt[a + c*x^2]/(a*d*x)) - (f*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])
*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d^2*Sqrt[e^2 -
4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + (f*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])*ArcTanh
[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a +
 c*x^2])])/(Sqrt[2]*d^2*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) + (e*ArcTanh[
Sqrt[a + c*x^2]/Sqrt[a]])/(Sqrt[a]*d^2)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1048

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 6860

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{x^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac {1}{d x^2 \sqrt {a+c x^2}}-\frac {e}{d^2 x \sqrt {a+c x^2}}+\frac {e^2-d f+e f x}{d^2 \sqrt {a+c x^2} \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {e^2-d f+e f x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{d^2}+\frac {\int \frac {1}{x^2 \sqrt {a+c x^2}} \, dx}{d}-\frac {e \int \frac {1}{x \sqrt {a+c x^2}} \, dx}{d^2}\\ &=-\frac {\sqrt {a+c x^2}}{a d x}-\frac {e \text {Subst}\left (\int \frac {1}{x \sqrt {a+c x}} \, dx,x,x^2\right )}{2 d^2}-\frac {\left (f \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d^2 \sqrt {e^2-4 d f}}+\frac {\left (f \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d^2 \sqrt {e^2-4 d f}}\\ &=-\frac {\sqrt {a+c x^2}}{a d x}-\frac {e \text {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x^2}\right )}{c d^2}+\frac {\left (f \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right ) \text {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d^2 \sqrt {e^2-4 d f}}-\frac {\left (f \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right ) \text {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d^2 \sqrt {e^2-4 d f}}\\ &=-\frac {\sqrt {a+c x^2}}{a d x}-\frac {f \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}+\frac {e \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.41, size = 298, normalized size = 0.81 \begin {gather*} -\frac {d \sqrt {a+c x^2}+2 \sqrt {a} e x \tanh ^{-1}\left (\frac {\sqrt {c} x-\sqrt {a+c x^2}}{\sqrt {a}}\right )+a x \text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {a e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+2 \sqrt {c} e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 \sqrt {c} d f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-e f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{a d^2 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]

[Out]

-((d*Sqrt[a + c*x^2] + 2*Sqrt[a]*e*x*ArcTanh[(Sqrt[c]*x - Sqrt[a + c*x^2])/Sqrt[a]] + a*x*RootSum[a^2*f + 2*a*
Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (a*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^
2] - #1] + 2*Sqrt[c]*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - 2*Sqrt[c]*d*f*Log[-(Sqrt[c]*x) + Sqrt[a
 + c*x^2] - #1]*#1 - e*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3
*Sqrt[c]*e*#1^2 + 2*f*#1^3) & ])/(a*d^2*x))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(735\) vs. \(2(322)=644\).
time = 0.13, size = 736, normalized size = 2.01 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

4*f^2/(e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)
^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2
)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(
1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2
*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))-4*f^2/(-e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)
*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*
d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*
c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x
-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4
*d*f+e^2)^(1/2))))+4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))/a/x*(c*x^2+a)^(1/2)+16*f^2*e/(-e+(-4*d*f
+e^2)^(1/2))^2/(e+(-4*d*f+e^2)^(1/2))^2/a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(f*x^2 + x*e + d)*x^2), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{2} \sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(x**2*sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^2\,\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)

[Out]

int(1/(x^2*(a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)

________________________________________________________________________________________